Efficient Volume Visualization of Large Medical Datasets

Stefan Bruckner*

Institute of Computer Graphics and Algorithms
Vienna University of Technology
Vienna, Austria

ABSTRACT

In volume visualization, huge amounts of data have to beqased.
While modern hardware is quite capable of this task in terfns o

processing power, the gap between CPU performance and memor

bandwidth further increases with every new generation dJE£P
It is therefore essential to efficiently use the limited meyrtzand-
width. In this paper, which summarizes the key findings ofittaes-
ter’s thesis with the same title [1], we present novel apghea to
optimize CPU-based volume raycasting of large datasetoon ¢
modity hardware. A new addressing scheme is introduced;twhi
permits the use of a bricked volume layout with minimal oeexth
We further present an extended parallelization strateg@ifmulta-
neous Multithreading. Finally, we introduce memory effitiac-
celeration data structures which enable us to render lasgical
datasets, such as the Visible Male (58341x 1878), at up to 2.5
frames/second on a commodity notebook.

1 INTRODUCTION

Direct volume rendering (DVR) is a powerful technique tougs
ize complex structures within volumetric data. Its mainatage,
compared to standard surface rendering, is the ability tecwe
rently display information about the surface and the ioteoi ob-
jects. This aids the user in conveying spatial relatiorsbijdiffer-
ent structures (see Figure 1).

In medicine, visualization of volumetric datasets accoliitsy
computed tomography (CT), magnetic resonance imaging JMRI
or ultrasound imaging helps to understand patient’'s pagicél
conditions, improves surgical planning, and has an impontale
in education. However, a typical data size of today’s chhiou-
tine is about 51 512x 1024 (12 bit CT data) and will increase
in the near future due to technological advances in actprisite-
vices. Conventional slicing is of limited use for such ladggasets
due to the enormous amount of slices. However, providiregrac-
tive three-dimensional volume visualization of such ladgéasets
is a challenging task.

The purpose of this paper is to summarize the key find-
ings of the master’s thesigfficient Volume Visualization of
Large Datasets[1] carried out at thelnstitute of Computer
Graphics and Algorithmsof the Vienna University of Tech-
nology in cooperation with TIANI Medgraph AG The full
text of the thesis and additional material is available at:
http://www.cg.tuwien.ac.at/"bruckner/homepage/cotiteastersthesis

The main motivation for the master’s thesis was to develop a

high-quality direct volume rendering system capable ofdtiag
large medical data on commodity hardware. As the systemavas t
be deployed on a large number of systems equipped with fystero
nous hard- and software, it was essential not to rely on aagitp
capabilities, such as special graphics hardware featutesrent
approaches for graphics hardware accelerated volumerirgdee

*e-mail: bruckner@cg.tuwien.ac.at

Figure 1: Direct volume rendering of a computed tomography an-
giography (CTA) dataset - enhanced display of blood vessels

still limited with respect to the dataset size (most graple@rds are
only equipped with 256 MB of memory while a standard PC has
1000 MB of main memory) and quality (e.g. floating-point oper
ations are only partly supported). Furthermore, pracficablems
like manufacturer dependent feature sets, different drigesions,
etc. were to be avoided. A fully software-based system gener
ally does not suffer from these problems, while still allogifor

a highly efficient solution.

The software implementation developed was integrated in
TIANI's medical workstationJ-Vision and is clinically used by
many customers. Furthermore, the research performednaiitiei
scope of this master’s thesis has lead to a number of pulolitsain
journals and at international conferences [4, 6, 5].

In this paper, we present several techniques developedftripe
high-quality volume visualization of large datasets§12x 512x
512) using commodity hardware. Section 2 is devoted to thenex
sive research that has been performed in this area. In 8;tive
deal with the fundamental issue of efficient memory manageme
We present methods to exploit parallelization techniquediable
on consumer hardware in Section 4. In Section 5, we introdaee
celeration data structures that do not suffer from the deakiof
high memory consumption. Finally, our results are preskatel
discussed in Section 6 and the paper is concluded in Section 7

2 RELATED WORK

Within the domain of volume visualization three basic dii@ts
of research have emerged: Firstly, in recent years methads h

been presented which utilize the latest features of consgrageh-
ics hardware. Secondly, several dedicated hardware aotutiave
been developed. The third category is CPU-based volumeried
using algorithmic optimizations.

Graphics hardware based solutions provide real-time perfo
mance and high quality [2, 3, 26, 15, 10, 24]. These methdgs re
on advanced graphics hardware features, which limits tisgron
general purpose PCs. Guthe et al. [8] utilize wavelet cosgioa
to handle large datasets. They gain performance by usingek le
of-detail approach based on the viewer position. One proldé
approaches using graphics hardware is that they are linmitewbir
functionalities: Basic rendering capabilities are supgaiby hard-
ware volume rendering solutions. However, advanced \iizatabn
systems provide preprocessing features such as filter@gmen-
tation, morphological operations, etc. If such operatiare not
supported by the hardware, they have to be performed on the CP
and data must be transferred back to the hardware. Thisférans
is very time consuming, thus, no interactive feedback isibbs.
Dedicated hardware solutions [7, 16, 20, 23, 22] providepetip
for many advanced visualization techniques. They featigh-h
quality and impressive performance. For example, the VelRra
board [22] is capable of rendering a 5¥512x 512 dataset at
30 frames/second. The disadvantage of these approachssiris t
high cost. In CPU-based solutions memory and processing-ban
width are limited. Their strength is the high flexibility amtlepen-
dence of special hardware capabilities. These approaehesm
specialized algorithms to provide interactivity. Many Inilgvel al-
gorithmic optimization techniques have been developedhiese
high performance. Most of these techniques have the asgampt
in common that only parts of the data have to be visualizeds Th
assumption is still valid, but the resolution delivered lgaisition
devices constantly increases. A main issue therefore isunalb
these large amounts of data. Approaches by Knittel [9] anchMb
al. [18] achieve high performance by using a spread memgouta

The main drawback of these approaches is the enormous memor)P

usage. In both systems, the usage is approximately foustthe
data size. This memory consumption is quite a limitatiomsod-

ering that the maximum virtual address space is about 3 GB on

current commodity computer systems.

One focus of our research was to address this issue in order to

present a new approach using significantly less memory.ritrast

to other methods, we try to reduce the influence of the memory
bottleneck by performing many computations (gradientestion,
shading) on-the-fly rather than to rely on precomputation.

3 MEMORY MANAGEMENT FOR LARGE DATASETS

The past years have shown that the discrepancy betweerspooce
and memory performance is rapidly increasing, making mgmor
access a potential bottleneck for applications which haactess
large amounts of data. Raycasting, in particular, is proneatise
problems, since it generally leads to irregular memory s&qat-
terns. This section discusses strategies to improve meatmgss
patterns taking advantage of the memory hierarchy.

The memory of contemporary computers is structured in a hi-
erarchy of successively larger, slower, and cheaper metaoeys.
Each level contains a working copy or cache of the level above
Recent developments in processor and memory technologly imp
an increasing penalty if programs do not take optimal acgmbf
the memory hierarchy. In general, if the CPU issues an ojperat
on a data item, the request is propagated down the cache-hiera
chy until the requested data is found. It is very time consugnii
the data is only found in a slow cache. This is due to the propa-
gation itself as well as to the back propagation of data thincail
the caches. For good performance, frequent access to terslo
caches has to be avoided. Accessing the slower caches,die h

block

(b)

Figure 2: Linear and bricked volume layouts. (a) linear volume layout
stored as a stack of slices. (b) bricked volume layout stored as a set
of blocks.

@)

disk and main memory, only once would be optimal. We assume
that there is enough main memory available to hold the voldata

and all other data structures necessary - the hard disk aslyohbe
accessed when a volume is loaded. Thus, the main focus lies in
optimizing main memory access.

3.1 Bricking

The most common way of storing volumetric data is a linear vol
ume layout. Volumes are typically thought of as a stack of-two
dimensional images (slices) which are stored in an arrasaliy.
The work-flow of a standard volume raycasting algorithm oima |
early stored volume is as follows: For every pixel of the imag
lane a ray is cast through the volume and the volume data is re
sampled along this ray. At every resample position resamgpli
gradient computation, shading, and compositing is perarnihe
closer the neighboring rays are to each other, the higheprthte
ability is that they partially process the same data. Givenfact
that rays are shot one after the other, it is very likely thatdame
data has to be read several times from main memory, because in
general the cache is not large enough to hold the processadfida
a single ray. This problem can be targeted by a techniquectall
tile casting. Here, rather than processing one ray cormipletach
pass processes only one resample point for every ray. Hoydife
ferent viewing directions still cause different amountsache line
requests to load the necessary data from main memory wtads le
to a varying frame-rate.

The concept of bricking supposes the decomposition of daba i
small fixed-sized data blocks (see Figure 2). Each blockoiedt
in linear order. The basic idea is to choose the block sizerdotg
to the cache size of the architecture so that an entire bltknfo
a fast cache of the system. It has been shown that brickinges o
way to achieve high cache coherency, without increasing ongm
usage [21]. However, accessing data in a bricked volumeutago
very costly.

3.2 Addressing

The addressing of data in a bricked volume layout is morelycost
than in a linear volume layout. To address one data elemast, o
has to address the block itself and the element within thekblo

In contrast to this addressing scheme, a linear volume caede

as one large block. To address a sample it is enough to compute
just one offset. In algorithms like volume raycasting, whiteed

to access a certain neighborhood of data in each processpg s
the computation of two offsets instead of one generally oabe

brick boundary saniple brick boundary saniple

XXX XXX XX XX XXXIXXXXX|X XX
XXX XX XXX XX X XXX XX XXX X X
XXXIX XXX XIX XX XXXIX XX XXX XX
XXXPRKXX XXX XX XXXIXXXX XX XX
XXXPRKXX XXX XX XXXIXXXXX]|X XX
XXXPRK XX XXX XX XXXIX XX XXX XX
XXXPRK XX XXX XX XXXIXXXXX]X XX
XXXPX XXX XX XX X XXIXXXXX]X XX
XXX XXX XX XX XXXIXXXXX]IXXX
XXXPKX XXX XXX X X XXX XX XXX X X
XXXIX XXX XIX XX XXXIXXXXXIXXX

@ (b)

Figure 3: Access patterns during resampling and gradient com-
putation. (a) typical access pattern during resampling (8-
neighborhood). (b) typical access pattern during gradient compu-
tation (26-neighborhood).

neglected. In a linear volume layout, the offsets to neigimgo
samples are constant. Using bricking, the whole addrespuatam
tion would have to be performed for each neighboring sanye t

has to be accessed. To avoid this performance penalty, ane ca

construct an if-else statement. The if-clause consistheéking

if the needed data elements can be addressed within one Hfock
the outcome is true, the data elements can be addressed as fas

in a linear volume. If the outcome is false, the costly adslicz-
culations have to be done. This simplifies address calonghut
the involved if-else statement incurs expensive pipelinshiés on
almost all current computer architectures.

We therefore apply a different approach [4]. We distingufsh
possible sample positions by the locations of the heedeghhei-
ing samples. The first sample locationj, k) is defined by the inte-
ger parts of the current resample position. Assuming &dirinter-
polation, during resampling neighboring samples to thbtritpp,
and back of the current location are required. A block canibelis
vided into subsets. For each subset, we can determine tblestilo
which the neighboring samples lie. Therefore, itis possiblstore
these offsets in a lookup table. This is illustrated in F&8r(a).

We see that there are four basic cases, which can be derived fr

the current sample location. This can be mapped straighéfoly
to 3D, which gives eight distinct cases.

The input parameters of the lookup table addressing fumetie
the sample positioffi, j, k) and the block dimensiorBy, By, and

B;. We assume that the block dimensions are a power of two, i.e.,

Bx = 2%, By = 2V, andB, = 2. As a first step, the block offset

part fromi, j, andk is extracted by a conjunction with the corre-
1. The next stepis to increase all by one to move

spondingBy 2 —
the maX|mum possible value Bfyy , —1t0Byy, 5. All the other
possible values stay within the ranfieBy,, — 1]. Then a con-
junction of the resulting value and the complemenBef, ;) —

is performed which maps the input vaIues[(boB{XyZ}] The Iast
step is to add the three values and divide the result by thenmam
of the block dimensions, which maps the result to [0,7]. Tast
division can be exchanged by a shift operation.
lookup table index for a positiofi, j,k) is given by:

= ((1& (Be—1)+1)& ~ (By—1)
i’ = ((j&By-1)+1)& ~(By—1) 1)
K = (k& (Bz—1)+1)& ~(B;—1)

index = (I’ +j +K) > min(Ny, Ny,Ny)

We use & to denote hitwise andoperation, to denote ditwise
or operation;> to denote aight shift operation, and- to denote a
bitwise negation

In summasy, t

A similar approach can be done for gradient computation. We
present a general solution for a 26-connected neighborhdede
we can, analogous to the resample case, distinguish 27.cases
The first step is to extract the block offset, by a conjunctidth
B(xyz —1. Then we subtract one, and conjunct Wifyy ,, +
Bixyz — 1, to separate the case if one or more components are
zero. In other words, zero is mapped td&¢y y ;y — 1. All the other

values stay within the rang®, By », — 2]. To separate the case of
one or more components beiBg, 1, we add 1, after the pre-
vious subtraction is undone by a JlSJunctlon with 1, withtmgs-

ing the separation of the zero case. Now all the cases areedapp
to {0,1,2} to obtain a ternary system. This is done by dividing
the components by the corresponding block dimensions. €Ttlies
visions can be replaced by faster shift operations. Thenhitee
ternary variables are mapped to an index in the rang®,ag|. In
summary, the lookup table index computation for a position k)

is:

"= (((((1& (Bx=1)) —1) & (2Bx—1)) | 1) +1) > Ny

i’ = (((((J& (By=1))=1) & (2By—1)) [1) +-1) > Ny

K= (k& (Bz—1))—1) & (2B, 1)) [1) +1) > N,
index = 9'+3j +K

(2)

The presented index computations can be performed effigient
on current CPUs, since they only consist of simple bit maaipu
tions. The lookup tables can be used in raycasting on a laficke
volume layout for efficient access to neighboring samplé first
table can be used if only the eight samples within a cell haJeet
accessed (e.g., if gradients have been pre-computed). eCload
table allows full access to a 26-neighborhood. Comparebeadft
else solution which has the costly computation of two offsethe
else branch, we get a speedup of about 30%. The benefit varies,
depending on the block dimensions. For a322 x 32 block size
the else-branch has to be executed in 10% of the cases and for a
16x 16 x 16 block size in 18% of the cases.

Another possible option to simplify the addressing is toait&]
each block by an additional border of samples from the neighb
blocks [8]. However, such a solution increases the overathary
usage considerably. For example, for a block size ok 32 x 32
the total memory is increased by approximately 20%. Thisis a
inefficient usage of memory resources and the storage radopd
reduces the effective memory bandwidth. Our approach ipedigt
requires no additional memory, as all blocks share one giadba
dress lookup table.

3.3 Traversal

It is most important to ensure that data once replaced indbobe
will not be required again to avoid thrashing. Law and Yagel
have presented a thrashless distribution scheme for pbrajicast-
ing [13]. Their scheme relies on an object space subdivisfahe
volume. While their method was essentially developed incthe
text of parallelization, to avoid redundant distributidrdata blocks
over a network, it is also useful for a single-processor apgin.

The volume is subdivided into blocks. These blocks are then
sorted in front-to-back order depending on the current wigvdi-
rection. The ordered blocks are placed in a set of blockilisssich
a way that no ray that intersects a block contained in a bietkdn
intersect another block from the same block list. Each bloulkls
a list of rays whose current resample position lies withtlock.
The rays are initially assigned to the block which they fing¢isect.
The blocks are then traversed in front-to-back order by setigily
processing the block lists. The blocks within one block dish be
processed in any order, e.g., in parallel. For each blodkags
contained in its list are processed. As soon as a ray leaviegl b
it is removed from its ray list and added to the new block’s|isty

647189 |10]11 simultaneously
advancing - processed blocks
ray-front 6471819110

7.7 A AAE

7274/ A AE

77 an

e rls
image plane

‘s subsequent block

Figure 4: Blockwise raycasting scheme. A ray-front is advancing
through the volume processing one list of blocks in each pass. The

numbers inside the blocks identify their block list. Figure 6: Concurrency problem in parallel block processing. The

two highlighted blocks are processed by different CPUs. When both
CPUs try to add their rays to the next block's ray list, race conditions

_____ >y R
v 1 1 Y can occur.
s 1 | \
s \\

. i il I 7 block lists described in Section 3.3 can be processed simedt
2] 3 3] 2 ously. Each list is partitioned among theunihysical CPUs avail-
able.
S 3 | 2 olocktist mumber A possible problem occurs when rays from two simultaneogsly
e —e. processed blocks have the same subsequent block, as shBign in
* 1l 2 2| B ure 6. As blocks processed by different CPUs can contain rays
\ / which have the same subsequent block, race conditions adwmr
/ i i \ both CPUs simultanously try to assign rays to the ray listré o
"""" >l fee block. One way of handling these cases would be to use synchro
viewing direction nization primitives such as mutexes or critical sectiongnsure
that only one thread can assign rays at a time. However, the re
Figure 5: Front-to-back orders of blocks. In an interval of 90 degrees quired overhead can decrease the performance drastiddlbre-
of the viewing direction the front-to-back order remains constant. fore, to avoid race conditions when two threads try to add tay
The numbers inside the blocks identify their block list, and thus the the ray list of a block, each block has a ray list for every [tsls
designated processing order. CPU. When a block is being processed, the rays of all thetseslie
cast. When a ray leaves the block, it is added to the new [Haealy’
list corresponding to the CPU currently processing the ray.
When the ray list of a block is empty, processing is continwét The basic algorithm processes the pre-generated blockitist
the next block. Figure 4 illustrates this approach. passes. ThérocessVolumg@rocedure (see Algorithm 1) is exe-
Due to the subdivision of the volume, it is very likely thatladk cuted by the main thread and distributes the blocks of eash pa
entirely remains in a fast cache while its rays are beinggssed, =~ among the available processors. It starts the executiétrarfess-
provided the block size is chosen appropriately. The geioeraf Blocks(see Algorithm 2) in a thread for each of the processors.
the block lists does not have to be performed for each franoe. F ProcessBlocksraverses the list of blocks assigned to a processor
parallel projection there are eight distinct cases wheeeotder of and processes the rays of each bldelocessRaperforms resam-

blocks which have to be processed remains the same. Thuistthe ~ Pling, gradient estimation, shading, and compositing fana until

can be pre-computed for these eight cases. Figure 5 shosviothi it leaves the current block or is terminated for anotheraeds.g.,
2D where there are four cases. early ray termination). It returns true if the ray enterstheoblock

and false if no further processing of the ray is necessaoynpute-
Block returns the new block of a ray when it has left the current
4 PARALLELIZATION STRATEGIES FOR COMMODITY block. In the listed procedurespuninysical is the number of phys-
HARDWARE ical CPUs in the system.

Raycasting has always posed a challenge on hardware resourc ‘Ajgorithm 1 ProcessVolumé(ocklisty
Thus, numerous approaches for parallelization have besepted.
As our target platform is consumer hardware, we have focosed
two parallelization schemes available in current stamt@lPCs:
Symmetric Multiprocessing (SMP) and Simultaneous Mul&td-

for all lists| in blocklistsdo
Partition] = o U... Ul coungnysicar-1
for i = 0 to counphysicai— 1 do
Begin execution of ProcessBlocksi) in threadTi1 on physical

ing (SMT). CPUI
end for
4.1 Symmetric Multiprocessing en\cliv?cl)trfor threadsT, .. Teounpnysica 1O finish

Architectures using multiple similar processors conndot@ a
high-bandwidth link and managed by one operating systemeare
ferred to as Symmetric Multiprocessing systems. Each psmre
has equal access to I/0O devices. As Law and Yagel's traversal
scheme was originally developed for parallelization, istiight- Simultaneous Multithreading is a well-known concept in kata-
forward to apply to SMP architectures. The blocks in eacthef t tion and mainframe hardware. It is based on the observalian t

4.2 Simultaneous Multithreading

Algorithm 2 ProcessBlock&(ocklistidphysica)

for all blocksb in blocklist do
for i = 0 tocounphysica— 1 do
for all raysr in b.raylist[i] do
if ProcessRay] then
{the ray has entered another bigck
Removel.raylist[i],r)
newBlock= ComputeBlock()
InserthiewBlockraylist[id pnysical])
else
{the ray has been terminated or has left the volhme
Removel.raylist[i],r)
end if
end for
end for
end for

the execution resources of a processor are rarely fullizetl Due
to memory latencies and data dependencies between insbsict
execution units have to wait for instructions to finish. Véhihod-
ern processors have out-of-order execution units whichdexdn-
structions to minimize these delays, they rarely find enange-
pendent instructions to exploit the processor’s full ptisdn SMT
uses the concept of multiple logical processors which stheree-
sources (including caches) of just one physical proce$Scecut-
ing two threads simultaneously on one processor has the&ada
of more independent instructions being available, and teads
to more efficient CPU utilization. Intel's SMT implementati is
called Hyper-Threading [14] and was first available on thetieen

4 CPU. Currently, two logical CPUs per physical CPU are sup-

ported.

Exploiting SMT, however, is not as straight-forward as ityma
seem at first glance. Since the logical processors sharesgaitis
essential that the threads operate on neighboring data.ifEnere-
fore, treating the logical CPUs in the same way as physicdJ<P
leads to little or no performance increase. Instead, it ingylen
lead to a decrease in performance, due to cache thrashings, Th

the processing scheme has to be extended in order to allow mul

tiple threads to operate within the same block. The bloclks ar
distributed among physical processors as described in ring-p
ous section. Within a block, multiple threads, each exegutin
a logical CPU, simultaneously process the rays of the blbsling
several threads to process the ray list of a block would leadde
conditions and would therefore require expensive syndhation.
Thus, instead of each block having just one ray list for eyays-
ical CPU, we now haveountogica lists per physical CPU, where
CoUNfogical iS the number of threads that will simultaneously pro-
cess the block, i.e., the number of logical CPUs per phy€iédl.
Thus, each block hamunhysical- COUNtogical Fay lists.

The basic algorithm described in the previous section isrede¢d
in the following way: TheProcessBlockgrocedure (see Algo-
rithm 3) now starts the execution BfrocessRay$or each logical
CPU of the physical CPU it is executed oRrocessRayésee Al-
gorithm 4) processes the rays of a block for one logical CPU. A
other routines remain unchanged.

Algorithm 3 ProcessBlock&(ocklistidphysica)

for all blocksb in blocklist do
for i = 0 to counfogical — 1 do
Begin execution of ProcessRaps@physicari) N thread
Tidghysicarcountogicar+i+1 ON logical CPUi of physical CPUd physical
end for
Walt for threadS-I-idphysicarcountog\cal+1""’Tidphysicalcountog\cal+countogical to
finish
end for

r “
physical CPU 0
logical CPU 0
advancing ,—"0
ray-front

image plane

logical CPU 3

physical CPU 1

Figure 7: Simultaneous Multithreading enabled raycasting. The work
is distributed among the threads T executing on different logical
CPUs.

Algorithm 4 ProcessRayb(ockidpnysicaridiogical)

for i = 0 to counphysicai— 1 do
for all raysr in blockraylist|i][idjogical] do
if ProcessRayj then
{the ray has entered another blgck
RemovegurrentBlockraylist|i][id physical])
block,ew = ComputeBlock()
Insertplockew.raylist(idphysical [idiogicar])
else
{the ray has been terminated or has left the volume
Removeblockraylist|i][idiogical],F)
end if
end for
end for

Figure 7 depicts the operation of the algorithm for a systéth w
two physical CPUs, each allowing simultaneous executiotwof
threads, i.ecounbhysicai= 2 andcountogical = 2. In the beginning
seven treadsly, ..., Tg, are startedTy performs all the preprocess-
ing. In particular, it has to assign the rays to those blobksugh
which the rays enter the volume first. Then it has to choosédtse
of blocks which can be processed simultaneously, with Espe
the eight to distinguish viewing directions. Each list istjiinned
by Tp and sent tdl; andT,. After a list is sent;Ty sleeps until its
slaves are finished. Then it continues with the next passends
one block after the other {63 andT,. T, sends one block after the
other toTs andTg. After a block is sent, they sleep until their slaves
are finished. Then they send the next block to process, and.so o
Ts, T4, Ts, andTg perform the actual raycasting. Therebyand
T, simultaneously process one block, archndTg simultaneously
process one block.

5 MEMORY EFFICIENT ACCELERATION DATA STRUC-
TURES

Applying efficient memory access and parallelization téghes
still is not sufficient to efficiently handle the huge prodegdoads
caused by large datasets. We present algorithmic optiioizato
reduce this workload. We introduce three techniques whadhe
can achieve a significant reduction of rendering times. al g

was to minimize the additional memory requirements of newy
troduced data structures.

5.1 Gradient Cache

It has been argued that the quality of the final image is hgavilu-
enced by the gradients used in shading [17]. High-qualiadigmt
estimation methods have been developed, which are ggneraie

expensive due to the large neighborhood they use [19]. Many a

proaches therefore use expensive gradient estimationitpets to
precompute gradients at the grid positions and store thegether
with the original samples. The additional memory requiretsge
however, limit the application of this approach to largeadats.
For example, using 2 bytes for each component of the gradient
creases the size of the dataset by a factor of four (assuntigyte2

locations

/2

/4

’

Figure 8: Redundant gradient computation at grid positions. With-
out caching, the gradient at the highlighted grid position has to be
recomputed multiple times.

are used for the original samples). In addition to the ineedanem-
ory demands of precomputed gradients, this approach alsces
the effective memory bandwidth. We therefore choose tooperf
gradient estimation on-the-fly. Consequently, when usiepgen-
sive gradient estimation method, caching of intermediaseilts is
inevitable if high performance has to be achieved. An olwiopti-
mization is to perform gradient estimation only once forreaell.
When a ray enters a new cell, the gradients are computed at all
eight corners of the cell. The benefit of this method is depanhd
on the number of resample locations per cell, i.e., the osgmple
distance.

However, the computed gradients are not reused for othks: cel
This means that each gradient typically has to be computgit ei
times, as illustrated in Figure 8. For expensive gradietitnasion
methods, this can considerably reduce the overall perfocmalt
is therefore important to store the results in a gradienheaklow-
ever, allocating such a cache for the whole volume still hasten-
tioned memory problem.

Our blockwise volume traversal scheme allows us to use a dif-
ferent approach. We perform gradient caching on a blocksbasi
The cache is able to store one gradient entry for every gréi po
tion contained in a cell of the current block. Thus, the reegli
cache size i§Bx+ 1) x (By + 1) x (Bz+ 1) whereBy, By, B; are
the block dimensions. The block dimensions have to be isexcta

block

template
1

L
—— A

image plane

Figure 9: Block template generation. The block is projected onto the
image plane, its depth values are rasterized and stored in a template
image.

by one to enable interpolation across block boundariesh Eae

try of the cache stores the three components of a gradidng as
4 byte single precision floating-point number for each cong.

Additionally, a bit array has to be stored that encodes tksegnce
of an entry in the cache for each grid position in a cell of theent

block.

When a ray enters a new cell, for each of the eight cornerseof th

cell the bit setis queried. If the result of a query is zere,ghadient
is computed and written into the cache. The correspondihg\af

the bit set is set to one. If the result of the query is one, thdignt
is already present in the cache and is retrieved. The dissatya of
this approach is that gradients at block borders have toipated
multiple times. However, this caching scheme still greatiguces
the performance impact of gradient computation and regurdy

a modest amount of memory. Furthermore, the required mermory
independent of the volume size, which makes this approapli-ap

cable to large datasets.

5.2 Entry Point Buffer

the visible volume, thus, we refer to this search as entmtpigter-
mination. The advantage of entry point determination isittdoes
not require additional overhead during the actual rayogspiro-
cess, but still allows to skip a high percentage of empty spébe
entry points are determined in the ray setup phase and tkearay
initialized to start processing at the calculated entnjitmms The
basic goal of entry point determination is to establish ddsuthe
entry point buffer, which stores the position of the firsensection
with the visible volume for each ray.

As blocks are the basic processing units of our algorithra, th
first step is to find all blocks which do not contribute to thsilie
volume using the current classification, i.e., all bloclet timly con-
tain data values which are classified as transparent. Itpsitant
that the classification of a whole block can be calculatedldyi
to allow interactive transfer function modification. We retdhe

minimum and maximum value of the samples contained in a block
and use a summed area table of the opacity transfer funation t

determine the visibility of the block [12, 11]. We then perfoa
projection of each non-transparent block onto the imageepleith
hidden surface removal to find the first intersection poirgaith ray

One of the major performance gains in volume rendering can be with the visible volume [25]. The goal is to establish an giptwint

achieved by quickly skipping data which is classified asdpan-
ent. In particular, it is important to begin sampling at piasis
close to the data of interest, i.e., the non-transparerat. dEtis is
particularly true for medical datasets, as the data of ésteis usu-
ally surrounded by large amounts of empty space (air). Tea igl
to find, for every ray, a position close to its intersectiompavith

buffer of the same size as the image plane, which contaircegbig
value for each ray’s intersection point with the visiblewole. For
parallel projection, this step can be simplified.

As all blocks have exactly the same shape, it is sufficienete g
erate one template by rasterizing the block under the cuview-
ing transformation (see Figure 9). Projection is perfortogttans-

@)

(b)

Figure 10: Block and octree projection. (a) projection of non-
transparent blocks. (b) projection of non-transparent octree nodes.

lating the template by a vectoe= (tx,ty,tz)T which corresponds to
the block’s position in three-dimensional space in viewbogrdi-
nates. Thust andty specify the position of the block on the image
plane (and therefore the location where the template haes verity
ten into the entry point buffer) and is added to the depth values
of the template. The Z-buffer algorithm is used to ensureewbr
visibility. In ray setup, the depth values stored in the ymoint
buffer are used to initialize the ray positions.

The disadvantage of this approach is that it requires an- addi
tion and a depth test at every pixel of the template for eacbkbl
This can be greatly reduced by choosing an alternative rdefthe
blocks are projected in back-to-front order. The backrtmf or-
der can be easily established by traversing the generateH lidts
(see Section 3.3) in reverse order. For each block the Zevafu
the generic template is written into the entry point buffegether
with a unique index of the block. After the projection has bee
performed, the entry point buffer contains the indices aaidtive
depth values of the entry points for each ray. In ray setupblbck
index is used to find the translation vectdor the block and; is
added to the relative depth value stored in the buffer to fiedein-
try point of the ray. The addition only has to be performeddeery
ray that actually intersects the visible volume.

We further extend this approach to determine the entry pamt
a finer resolution than block granularity. We replace theimim
and maximum values stored for every block by a min-max octree
Its root node stores the minimum and maximum values of alksam
ples contained in the block. Each additional level cont#iramin-
imum and maximum value for smaller regions, resulting in aeno
detailed description of parameter variations inside tloehl The
resulting improvement in entry point determination is dégil in
Figure 10. Every time the classification changes, the surraneal
table is recursively evaluated for each octree node andlaissifi-
cation information is stored as linearized octree bit engpdsing
hierarchy compression.

The projection algorithm is modified as follows. Instead néo
block template there is now a template for every octree levbe
projection of one block is performed by recursively trauggyshe
hierarchical classification information in back-to-fromtder and
projecting the appropriate templates for each level, if ¢tbere-
sponding octree node is non-transparent. In addition tdolbek
index, the entry point buffer now also stores an index fordbe
responding octree node. In ray setup, the depth value inrttrg e
point buffer is translated by the tyecomponent of the translation
vector plus the sum of the relative offsets of the node in ttece.

The node index encodes the position of a node’s origin within
the octree. It can be calculated in the following way:

N-1

indexnode = Z) octant(node - 8N~1-1 3)

whereN is the depth of the octreectant is the octant of level
i where the node is located. For an octree of déytthere are
8N different indices. The relative translational offsetstfoe octree
nodes can be precomputed and stored in a lookup tablé efiiies
indexed by the node index.

5.3 Cell Invisibility Cache

We introduce a cell invisibility cache to skip the remaintranspar-
ent regions at cell level. We can skip the resampling and osityp
ing in a cell if all eight samples of the cell are classifiedragspar-
ent. To determine the transparency, a transfer-functiokup has
to be performed for each of these samples. For large zoomr§act
several rays can hit the same cell and for each of these ragaithe
lookups would have to be performed.

A cell invisibility cache is attached at the beginning of thedi-
tional volume raycasting pipeline. This cache is initiaizn such
a way that it reports every cell as visible. In other wordsgwell
has to be classified. Now, if a ray is sent down the pipelineryev
time a cell is classified invisible this information is stdrim the
cache. If a cell is found to be invisible, this informationsiered
by setting the corresponding bit in the cell invisibilityatee. As
the cache stores the combined information for eight sangfies
cell in just one bit, this is more efficient than performingranis-
fer function lookup for each sample. The information starethe
cell invisibility cache remains valid as long as no trandterction
modifications are performed. During the examination of tatad
e.g., by changing the viewing direction, the cache fills ug tre
performance increases progressively.

The advantage of this technique is that no extensive computa
tions are required when the transfer function changes. &hketr
of the buffer can be performed with virtually no delay, allog/
fully interactive classification. As transfer function sffeation is
a non-trivial task, minimizing delays initiated by transfanction
modifications greatly increases usability.

6 RESULTS

We performed a comprehensive performance evaluation girthe
posed techniques. The results were obtained by thorougériexp
ments on diverse hardware.

6.1 Memory Management for Large Datasets

For a comparison of bricked and linear volume layouts, wel ase
Dual Intel Pentium Xeon 2.4 GHz equipped with 512 KB level-2
cache, 8 KB level-1 data cache, and 1 GB of Rambus memory.

In our system, we are able to support different block sizes, a
long as each block dimension is a power of two. If we set thelblo
size to the actual volume dimensions, we have a common ri@ycas
which operates on a simple linear volume layout. This ersabte
to make a meaningful comparison between a raycaster whieh op
ates on simple linear volume layout and a raycaster whichebge
on a bricked volume layout. To underline the effect of bnki
we benchmarked different block sizes. Figure 11 shows theabc
speedup achieved by blockwise raycasting. For testing,pgeis
fied a translucent transfer-function, such that the imp#atl digh
level optimizations was overridden. In other words, thelfimage
was the result of brute-force raycasting of the whole date Size
of the dataset had no influence on the actual optimal gains.

Going from left to right in the chart shown in Figure 11, firstw
have a speedup of about 2.0 with a block size of 1 KB. Incrgasin
the block size up to 64 KB also increases the speedup. Thigeis d
to more efficient use of the cache. The chart shows an optintiam a
block size of 64KB (3% 32x 32) with a speedup of about 2.8. This
number is the optimal tradeoff between the needed cache $pac

g
Q
S 4 4
o
g
i A optimal block size
@ X238
X
2 X bricking overhead
affects speedup < simple linear
1 X X 7~ volume layout
1 8 64 512 4096 32768

block size in KB

Figure 11: Block-based raycasting speedup compared to raycasting
on a linear volume layout.

CPUs | SMT computation time speedup
one off | [1 thread [l 1.00
one on 2 threads | 30% savings 1.42
two | off | [2threads | 2% savings 1.96
two on [4threads | 64% savings 2.78
Figure 12: Symmetric Multiprocessing and Simultaneous Multi-

threading speedups.

ray data structures, sample data, and lookup tables. Lbfgek
sizes lead to performance decreases, as they are too larteefo
cache, but still suffer from the overhead caused by brickiflis
performance drop-off is reduced, once the block size apbem
the volume size. With only one volume-sized block, the reimde
context is that of a common raycaster operating on a linelanve
layout.

6.2 Parallelization Strategies for Commodity Hardware

To evaluate the performance of our parallelization stiategwe
used the same test system as in the previous section. Thésrsys
has two CPUs and supports Hyper-Threading. Our systemegabl
force threads on specific physical and logical CPUs. By valhg
this mechanism we tested different configurations to olfigimres
for the speedup achieved by the presented techniques.shliues
consistently showed the same speedup factors.

The achieved speedups for Symmetric Multiprocessing and Si
multaneous Multithreading are shown in Figure 12. TestiRg S
multaneous Multithreading on only one CPU showed an aver-
age speedup of 30%. While changing the viewing directios, th
speedup varies from 25% to 35%, due to different transfer pat
terns between the level 1 and the level 2 cache. Whether Hyper
Threading is enabled or disabled, adding a second CPU approx
imately reduces the computational time by 50%, i.e., Symimet
Multiprocessing and Simultaneous Multithreading are pedelent.
This shows that our Simultaneous Multithreading scheméesca
very well on multi-processor machines. The Hyper-Thregdin
benefit of approximately 30% is maintained if the second hype
threaded CPU is enabled.

6.3 Memory Efficient Acceleration Data Structures

To demonstrate the impact of our high-level optimizatiorsuged
a commodity notebook system equipped with an Intel Centtibo
GHz CPU, 1 MB level 2 cache, and 1 GB RAM. This system has

zoomfactor 2.0

&

zoomfactor 1.0

®

zoomfactor 0.5

4

render time in seconds

1.0 0.75 0.5 0.125 1.0 0.75 0.5 0.125 1.0 0.75 0.5 0.125

object sample distance

[-D- no caching cell caching =o= block caching]

Figure 13: Comparison of different gradient caching strategies.

one CPU and does not support Hyper-Threading so the presente
results only reflect performance increases due to our lagé-bac-
celeration techniques.

The memory consumption of the gradient cache is not related
to the volume dimensions, but determined by the fixed blozk.si
We use 32« 32 x 32 sized blocks, the size of the gradient cache
therefore is is(33)3- 3- 4 byte~ 422 KB. Additionally we store
for each cache entry a validity bit, which adds up t3 @8bytes~
4.39 KB.

Figure 13 shows the effect of per block gradient caching com-
pared to per cell gradient caching and no gradient cachiradl.at
Per cell gradient caching means that gradients are reuseduie
tiple resample locations within a cell. We chose an adeqpjsae-
ity transfer function to enforce translucent rendering.e Tharts
from left to right show different timings for object samplisnces
from 1.0 to 0.125 for three different zoom factors 0.5, 1rij 2.0.

In case of zoom factor 1.0 we have one ray per cell, already her
per block gradient caching performs better than per celligra
caching. This is due to the shared gradients between cells. F
zooming out (0.5) both gradient caching schemes perforralBqu
well. The rays are so far apart that nearly any gradientshaned.

On the other hand, for zooming in (2.0), per block cachindquars
much better than per cell caching. This is due to the incoeasm-

ber of rays per cell. For this zoom factor, per brick gradathing
achieves a speedup of approximately 3.0 compared to noegrtadi
caching at a typical object sample distance of 0.5

The additional memory usage of the acceleration data stest
is rather low. The cell invisibility cache has a size o 3 = 4096
byte. The min-max octree has a depth of three storing 4 byte at
each node (a 2 byte minimum and maximum value) and requires
at most 2340 byte. Additionally, the classification infotioa is
stored, which requires 66 byte. We use blocks of size 32 x 32
storing 2 bytes for each sample, which is a total of 65536 dyte
Our data structures increase the total memory requirentgnap-
proximately 10%.

Figure 14 compares our acceleration techniques for thrge la
medical datasets. In the fourth column of the table, the eend
times for entry point determination using block granujait dis-
played. Column five shows the render times for octree baseyd en
point determination. In the fifth column, the render timesdo-
tree based entry point determination plus cell invisipititaching
are displayed. Typically, about 2 frames/second are aetiéor
these large data sets.

lower extremities

Visible Male

aorta

Image Dimensions Size Block Octree Cell
@ 587x 341x 1878 0.70GB 0.61s 0.46s 040s
(b) 587x341x 1878 0.70GB 0.68s 0.53s 0.45s
(© 512x512x 1112 054GB 1.16s 093s 0.61s
(d) 512x512x 1202 059GB 0.86s 0.70s 0.64s
(e) 512x512x 1202 0.59GB 0.69s 0.46s 0.37s

Figure 14: Acceleration techniques tested on different datasets. Col-
umn four lists the render times for entry point determination at block
level. The fifth column gives the render times for entry point deter-
mination using octree projection. The last column lists render times
for octree projection plus additional cell invisibility caching.

6.4 Visualization Results

To demonstrate the applicability of the presented methedg]is-
play visualization results for clinical datasets in Figi&, 16, 17,

and 18. The images show anatomic features and/or pathslogie

7 CONCLUSION

We have presented different techniques for volume visatitin of

large datasets on commodity hardware. We have shown that effi
cient memory management is fundamental to achieve higloiperf
mance. Our work on parallelization has demonstrated th#t we
known methods for large parallel systems can be adapted»and e

tended to exploit evolving technologies, such as Simutiaaéul-
tithreading. Our memory efficient data structures providankes

per second performance even for large datasets. A key pbint o
our work was to demonstrate that commodity hardware is able t

achieve the performance necessary for real-world medpgaica-
tions. In future work, we will investigate out-of-core anahepres-
sion methods to permit the use of even larger datasets.

REFERENCES

[1] S. Bruckner. Efficient volume visualization of large niead datasets.
Master’s thesis, Vienna University of Technology, 2004.

[2] B. Cabral, N. Cam, and J. Foran. Accelerated volume néngend
tomographic reconstruction using texture mapping haredwarPro-

ceedings of the Symposium on Volume Visualization ,1j8&des 91—

98, 1994.
[3] A. Van Gelder and K. Kim. Direct volume rendering with slirag

via three-dimensional textures. Rroceedings of the Symposium on

Volume Visualization 199¢ages 23-30, 1996.

[4] S. Grimm, S. Bruckner, A. Kanitsar, and E. Groller. A refd data
addressing and processing scheme to accelerate volumastiagc
Computers & Graphics28(5), 2004. To appear.

[5] S.Grimm, S. Bruckner, A. Kanitsar, and M. E. Grollerefible direct

multi-volume rendering in dynamic scenes.Rroceedings of the 9th

(6]

(7]

(8]

(9

(20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

International Fall Workshop on Vision, Modeling, and Visgation,
2004. To appear.

S. Grimm, S. Bruckner, A. Kanitsar, and M. E. Groller. Mery ef-
ficient acceleration structures and techniques for cpedaslume
raycasting of large data. IAroceedings of the 9th IEEE/SIGGRAPH
Symposium on Volume Visualization and Graph®04. To appear.

T. Gunther, C. Poliwoda, C. Reinhart, J. Hesser, R. M#nH.-P.
Meinzer, and H.-J. Baur. VIRIM: A massively parallel prosesfor
real-time volume visualization in medicin€omputers & Graphics
19(5):705-710, 1995.

S. Guthe, M. Wand, J. Gonser, and W. Stral3er. Interactneering
of large volume data sets. Rroceedings of Visualization 200@ages
53-60, 2002.

G. Knittel. The UltraVis system. IfProceedings of the Symposium on
Volume Visualization 20Q0@ages 71-79, 2000.

J. Kruger and R. Westermann. Acceleration technidoie&PU-based
volume rendering. IfProceedings of Visualization 200Bages 287—
292, 2003.

P. Lacroute.Fast Volume Rendering Using a Shear-Warp Factoriza-
tion of the Viewing TransformationPhD thesis, Stanford University,
Computer Systems Laboratory, 1995.

P. Lacroute and M. Levoy. Fast volume rendering usingheas
warp factorization of the viewing transformaticBomputer Graphics
28(Annual Conference Series):451-458, 1994.

A. Law and R. Yagel. Multi-frame thrashless ray castingh ad-
vancing ray-front. IrProceedings of Graphics Interfaces 19pages
70-77, 1996.

D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Midr, and
M. Upton. Hyper-threading technology architecture andro@echi-
tecture.Intel Technology Journab(1):4-15, 2002.

M. Meiner, U. Hoffmann, and W. StraRer. Enabling dfécation
and shading for 3D texture mapping based volume renderiimg us
OpenGL and extensions. Rroceedings of Visualization 1998ages
207-214, 1999.

M. MeiBner, U. Kanus, G. Wetekam, J. Hirche, A. Ehlert, SttaRer,
M. Doggett, and R. Proksa. VIZARD II: A reconfigurable intetiae
volume rendering system. FProceedings of the Workshop on Graph-
ics Hardware 2002pages 137-146, 2002.

T. Mdller, R. Machiraju, K. Mueller, and R. Yagel. A cqrarison
of normal estimation schemes. Broceedings of Visualization 1997
pages 19-26, 1997.

B. Mora, J.-P. Jessel, and R. Caubet. A new object-aragicasting
algorithm. In Proceedings of Visualization 200pages 203-210,
2002.

L. Neumann, B. Csébfalvi, A. Kdnig, and M. E. GrolleGradient
estimation in volume data using 4D linear regressiorProceedings
of Eurographics 2000pages 351-358, 2000.

R. Osborne, H. Pfister, H. Lauer, N. McKenzie, S. Gibséh,Hi-
att, and T. Ohkami. EM-Cube: An architecture for low-costlme
volume rendering. IProceedings of the Workshop on Graphics Hard-
ware 1997 pages 131-138, 1997.

S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansel P. Shirley.
Interactive ray tracing for volume visualizatiodEEE Transactions
on Visualization and Computer Graphjc&y(3):238-250, 1999.

H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and ¢ilé3. The vol-
umepro real-time ray-casting system. Rroceedings of SIGGRAPH
1999 pages 251-260, 1999.

H. Ray, H. Pfister, D. Silver, and T. A. Cook. Ray castinghétec-
tures for volume visualization.|[EEE Transactions on Visualization
and Computer Graphic$(3):210-223, 1999.

S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Stesis Smart
hardware-accelerated volume rendering.Phoceedings of the Joint
EUROGRAPHICS - IEEE TCVG Symposium on Visualisation 2003
pages 231-238, 2003.

R. Srinivasan, S. Fang, and S. Huang. Volume rendenjrtgroplate-
based octree projection. Rroceedings of the Workshop on Visualiza-
tion in Scientific Computing 199pages 155-163, 1997.

R. Westermann and T. Ertl. Efficiently using graphicsdveare in
volume rendering applications. Proceedings of SIGGRAPH 1998
pages 169-178, 1998.

Figure 15: CT scan of colon. Bones and colon are displayed in the Figure 17: CT scan of lumbar spine. A fracture of a lumbar vertebra
top image. The bottom image shows the colon without bones. is highlighted.

Figure 16: CT scan of heart. The myocardal muscle is displayed in Figure 18: CT scan of abdomen. Through enhancement of the ab-
red, the coronary vessels are depicted in yellow tones. dominal vascular structure an aorta aneurysma can be recognized.

