
Efficient Volume Visualization of Large Medical Datasets

Stefan Bruckner∗

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Vienna, Austria

ABSTRACT

In volume visualization, huge amounts of data have to be processed.
While modern hardware is quite capable of this task in terms of
processing power, the gap between CPU performance and memory
bandwidth further increases with every new generation of CPUs.
It is therefore essential to efficiently use the limited memory band-
width. In this paper, which summarizes the key findings of themas-
ter’s thesis with the same title [1], we present novel approaches to
optimize CPU-based volume raycasting of large datasets on com-
modity hardware. A new addressing scheme is introduced, which
permits the use of a bricked volume layout with minimal overhead.
We further present an extended parallelization strategy for Simulta-
neous Multithreading. Finally, we introduce memory efficient ac-
celeration data structures which enable us to render large medical
datasets, such as the Visible Male (587×341×1878), at up to 2.5
frames/second on a commodity notebook.

1 INTRODUCTION

Direct volume rendering (DVR) is a powerful technique to visual-
ize complex structures within volumetric data. Its main advantage,
compared to standard surface rendering, is the ability to concur-
rently display information about the surface and the interior of ob-
jects. This aids the user in conveying spatial relationships of differ-
ent structures (see Figure 1).

In medicine, visualization of volumetric datasets acquired by
computed tomography (CT), magnetic resonance imaging (MRI),
or ultrasound imaging helps to understand patient’s pathological
conditions, improves surgical planning, and has an important role
in education. However, a typical data size of today’s clinical rou-
tine is about 512×512×1024 (12 bit CT data) and will increase
in the near future due to technological advances in acquisition de-
vices. Conventional slicing is of limited use for such largedatasets
due to the enormous amount of slices. However, providing interac-
tive three-dimensional volume visualization of such largedatasets
is a challenging task.

The purpose of this paper is to summarize the key find-
ings of the master’s thesisEfficient Volume Visualization of
Large Datasets[1] carried out at theInstitute of Computer
Graphics and Algorithmsof the Vienna University of Tech-
nology in cooperation with TIANI Medgraph AG. The full
text of the thesis and additional material is available at:
http://www.cg.tuwien.ac.at/˜bruckner/homepage/content/mastersthesis.

The main motivation for the master’s thesis was to develop a
high-quality direct volume rendering system capable of handling
large medical data on commodity hardware. As the system was to
be deployed on a large number of systems equipped with heteroge-
nous hard- and software, it was essential not to rely on any specific
capabilities, such as special graphics hardware features.Current
approaches for graphics hardware accelerated volume rendering are

∗e-mail: bruckner@cg.tuwien.ac.at

Figure 1: Direct volume rendering of a computed tomography an-
giography (CTA) dataset - enhanced display of blood vessels

still limited with respect to the dataset size (most graphics cards are
only equipped with 256 MB of memory while a standard PC has
1000 MB of main memory) and quality (e.g. floating-point oper-
ations are only partly supported). Furthermore, practicalproblems
like manufacturer dependent feature sets, different driver versions,
etc. were to be avoided. A fully software-based system gener-
ally does not suffer from these problems, while still allowing for
a highly efficient solution.

The software implementation developed was integrated in
TIANI’s medical workstationJ-Vision and is clinically used by
many customers. Furthermore, the research performed within the
scope of this master’s thesis has lead to a number of publications in
journals and at international conferences [4, 6, 5].

In this paper, we present several techniques developed to perform
high-quality volume visualization of large datasets (> 512×512×
512) using commodity hardware. Section 2 is devoted to the exten-
sive research that has been performed in this area. In Section 3, we
deal with the fundamental issue of efficient memory management.
We present methods to exploit parallelization techniques available
on consumer hardware in Section 4. In Section 5, we introduceac-
celeration data structures that do not suffer from the drawback of
high memory consumption. Finally, our results are presented and
discussed in Section 6 and the paper is concluded in Section 7.

2 RELATED WORK

Within the domain of volume visualization three basic directions
of research have emerged: Firstly, in recent years methods have

been presented which utilize the latest features of consumer graph-
ics hardware. Secondly, several dedicated hardware solutions have
been developed. The third category is CPU-based volume rendering
using algorithmic optimizations.

Graphics hardware based solutions provide real-time perfor-
mance and high quality [2, 3, 26, 15, 10, 24]. These methods rely
on advanced graphics hardware features, which limits theiruse on
general purpose PCs. Guthe et al. [8] utilize wavelet compression
to handle large datasets. They gain performance by using a level-
of-detail approach based on the viewer position. One problem of
approaches using graphics hardware is that they are limitedin their
functionalities: Basic rendering capabilities are supported by hard-
ware volume rendering solutions. However, advanced visualization
systems provide preprocessing features such as filtering, segmen-
tation, morphological operations, etc. If such operationsare not
supported by the hardware, they have to be performed on the CPU
and data must be transferred back to the hardware. This transfer
is very time consuming, thus, no interactive feedback is possible.
Dedicated hardware solutions [7, 16, 20, 23, 22] provide support
for many advanced visualization techniques. They feature high-
quality and impressive performance. For example, the VolumePro
board [22] is capable of rendering a 512× 512× 512 dataset at
30 frames/second. The disadvantage of these approaches is their
high cost. In CPU-based solutions memory and processing band-
width are limited. Their strength is the high flexibility andindepen-
dence of special hardware capabilities. These approaches rely on
specialized algorithms to provide interactivity. Many high-level al-
gorithmic optimization techniques have been developed to achieve
high performance. Most of these techniques have the assumption
in common that only parts of the data have to be visualized. This
assumption is still valid, but the resolution delivered by acquisition
devices constantly increases. A main issue therefore is to handle
these large amounts of data. Approaches by Knittel [9] and Mora et
al. [18] achieve high performance by using a spread memory layout.
The main drawback of these approaches is the enormous memory
usage. In both systems, the usage is approximately four times the
data size. This memory consumption is quite a limitation, consid-
ering that the maximum virtual address space is about 3 GB on
current commodity computer systems.

One focus of our research was to address this issue in order to
present a new approach using significantly less memory. In contrast
to other methods, we try to reduce the influence of the memory
bottleneck by performing many computations (gradient estimation,
shading) on-the-fly rather than to rely on precomputation.

3 MEMORY M ANAGEMENT FOR L ARGE DATASETS

The past years have shown that the discrepancy between processor
and memory performance is rapidly increasing, making memory
access a potential bottleneck for applications which have to access
large amounts of data. Raycasting, in particular, is prone to cause
problems, since it generally leads to irregular memory access pat-
terns. This section discusses strategies to improve memoryaccess
patterns taking advantage of the memory hierarchy.

The memory of contemporary computers is structured in a hi-
erarchy of successively larger, slower, and cheaper memorylevels.
Each level contains a working copy or cache of the level above.
Recent developments in processor and memory technology imply
an increasing penalty if programs do not take optimal advantage of
the memory hierarchy. In general, if the CPU issues an operation
on a data item, the request is propagated down the cache hierar-
chy until the requested data is found. It is very time consuming if
the data is only found in a slow cache. This is due to the propa-
gation itself as well as to the back propagation of data through all
the caches. For good performance, frequent access to the slower
caches has to be avoided. Accessing the slower caches, like hard

block

(a) (b)

Figure 2: Linear and bricked volume layouts. (a) linear volume layout
stored as a stack of slices. (b) bricked volume layout stored as a set
of blocks.

disk and main memory, only once would be optimal. We assume
that there is enough main memory available to hold the volumedata
and all other data structures necessary - the hard disk only has to be
accessed when a volume is loaded. Thus, the main focus lies in
optimizing main memory access.

3.1 Bricking

The most common way of storing volumetric data is a linear vol-
ume layout. Volumes are typically thought of as a stack of two-
dimensional images (slices) which are stored in an array linearly.
The work-flow of a standard volume raycasting algorithm on a lin-
early stored volume is as follows: For every pixel of the image
plane a ray is cast through the volume and the volume data is re-
sampled along this ray. At every resample position resampling,
gradient computation, shading, and compositing is performed. The
closer the neighboring rays are to each other, the higher theprob-
ability is that they partially process the same data. Given the fact
that rays are shot one after the other, it is very likely that the same
data has to be read several times from main memory, because in
general the cache is not large enough to hold the processed data of
a single ray. This problem can be targeted by a technique called
tile casting. Here, rather than processing one ray completely, each
pass processes only one resample point for every ray. However, dif-
ferent viewing directions still cause different amounts ofcache line
requests to load the necessary data from main memory which leads
to a varying frame-rate.

The concept of bricking supposes the decomposition of data into
small fixed-sized data blocks (see Figure 2). Each block is stored
in linear order. The basic idea is to choose the block size according
to the cache size of the architecture so that an entire block fits into
a fast cache of the system. It has been shown that bricking is one
way to achieve high cache coherency, without increasing memory
usage [21]. However, accessing data in a bricked volume layout is
very costly.

3.2 Addressing

The addressing of data in a bricked volume layout is more costly
than in a linear volume layout. To address one data element, one
has to address the block itself and the element within the block.
In contrast to this addressing scheme, a linear volume can beseen
as one large block. To address a sample it is enough to compute
just one offset. In algorithms like volume raycasting, which need
to access a certain neighborhood of data in each processing step,
the computation of two offsets instead of one generally cannot be

brick boundary sample brick boundary sample

(a) (b)

Figure 3: Access patterns during resampling and gradient com-
putation. (a) typical access pattern during resampling (8-
neighborhood). (b) typical access pattern during gradient compu-
tation (26-neighborhood).

neglected. In a linear volume layout, the offsets to neighboring
samples are constant. Using bricking, the whole address computa-
tion would have to be performed for each neighboring sample that
has to be accessed. To avoid this performance penalty, one can
construct an if-else statement. The if-clause consists of checking
if the needed data elements can be addressed within one block. If
the outcome is true, the data elements can be addressed as fast as
in a linear volume. If the outcome is false, the costly address cal-
culations have to be done. This simplifies address calculation, but
the involved if-else statement incurs expensive pipeline flushes on
almost all current computer architectures.

We therefore apply a different approach [4]. We distinguishthe
possible sample positions by the locations of the needed neighbor-
ing samples. The first sample location(i, j ,k) is defined by the inte-
ger parts of the current resample position. Assuming trilinear inter-
polation, during resampling neighboring samples to the right, top,
and back of the current location are required. A block can be subdi-
vided into subsets. For each subset, we can determine the blocks in
which the neighboring samples lie. Therefore, it is possible to store
these offsets in a lookup table. This is illustrated in Figure 3 (a).
We see that there are four basic cases, which can be derived from
the current sample location. This can be mapped straightforwardly
to 3D, which gives eight distinct cases.

The input parameters of the lookup table addressing function are
the sample position(i, j ,k) and the block dimensionsBx, By, and
Bz. We assume that the block dimensions are a power of two, i.e.,
Bx = 2Nx , By = 2Ny , andBz = 2Nz. As a first step, the block offset
part from i, j , andk is extracted by a conjunction with the corre-
spondingB{x,y,z}−1. The next step is to increase all by one to move
the maximum possible value ofB{x,y,z}−1 toB{x,y,z}. All the other
possible values stay within the range[1,B{x,y,z}−1]. Then a con-
junction of the resulting value and the complement ofB{x,y,z}−1
is performed, which maps the input values to[0,B{x,y,z}]. The last
step is to add the three values and divide the result by the minimum
of the block dimensions, which maps the result to [0,7]. Thislast
division can be exchanged by a shift operation. In summary, the
lookup table index for a position(i, j ,k) is given by:

i′ = ((i & (Bx−1))+1) & ∼ (Bx−1)
j ′ = ((j & (By−1))+1) & ∼ (By−1)
k′ = ((k & (Bz−1))+1) & ∼ (Bz−1)

index = (i′ + j ′ +k′) ≫ min(Nx,Ny,Nz)

(1)

We use & to denote abitwise andoperation,| to denote abitwise
or operation,≫ to denote aright shift operation, and∼ to denote a
bitwise negation.

A similar approach can be done for gradient computation. We
present a general solution for a 26-connected neighborhood. Here
we can, analogous to the resample case, distinguish 27 cases.
The first step is to extract the block offset, by a conjunctionwith
B{x,y,z} − 1. Then we subtract one, and conjunct withB{x,y,z} +
B{x,y,z} − 1, to separate the case if one or more components are
zero. In other words, zero is mapped to 2·B{x,y,z}−1. All the other
values stay within the range[0,B{x,y,z}−2]. To separate the case of
one or more components beingB{x,y,z}−1, we add 1, after the pre-
vious subtraction is undone by a disjunction with 1, withoutloos-
ing the separation of the zero case. Now all the cases are mapped
to {0,1,2} to obtain a ternary system. This is done by dividing
the components by the corresponding block dimensions. These di-
visions can be replaced by faster shift operations. Then thethree
ternary variables are mapped to an index in the range of[0,26]. In
summary, the lookup table index computation for a position(i, j ,k)
is:

i′ = (((((i & (Bx−1))−1) & (2Bx−1)) | 1)+1) ≫ Nx
j ′ = (((((j & (By−1))−1) & (2By−1)) | 1)+1) ≫ Ny
k′ = (((((k & (Bz−1))−1) & (2Bz−1)) | 1)+1) ≫ Nz

index = 9i′ +3 j ′ +k′

(2)
The presented index computations can be performed efficiently

on current CPUs, since they only consist of simple bit manipula-
tions. The lookup tables can be used in raycasting on a bricked
volume layout for efficient access to neighboring samples. The first
table can be used if only the eight samples within a cell have to be
accessed (e.g., if gradients have been pre-computed). The second
table allows full access to a 26-neighborhood. Compared to the if-
else solution which has the costly computation of two offsets in the
else branch, we get a speedup of about 30%. The benefit varies,
depending on the block dimensions. For a 32×32×32 block size
the else-branch has to be executed in 10% of the cases and for a
16×16×16 block size in 18% of the cases.

Another possible option to simplify the addressing is to inflate
each block by an additional border of samples from the neighboring
blocks [8]. However, such a solution increases the overall memory
usage considerably. For example, for a block size of 32×32×32
the total memory is increased by approximately 20%. This is an
inefficient usage of memory resources and the storage redundancy
reduces the effective memory bandwidth. Our approach practically
requires no additional memory, as all blocks share one global ad-
dress lookup table.

3.3 Traversal

It is most important to ensure that data once replaced in the cache
will not be required again to avoid thrashing. Law and Yagel
have presented a thrashless distribution scheme for parallel raycast-
ing [13]. Their scheme relies on an object space subdivisionof the
volume. While their method was essentially developed in thecon-
text of parallelization, to avoid redundant distribution of data blocks
over a network, it is also useful for a single-processor approach.

The volume is subdivided into blocks. These blocks are then
sorted in front-to-back order depending on the current viewing di-
rection. The ordered blocks are placed in a set of block listsin such
a way that no ray that intersects a block contained in a block list can
intersect another block from the same block list. Each blockholds
a list of rays whose current resample position lies within the block.
The rays are initially assigned to the block which they first intersect.
The blocks are then traversed in front-to-back order by sequentially
processing the block lists. The blocks within one block listcan be
processed in any order, e.g., in parallel. For each block, all rays
contained in its list are processed. As soon as a ray leaves a block,
it is removed from its ray list and added to the new block’s raylist.

5

4 5

53 4

542 3

5431 2

image plane

advancing

ray-front

1110986 7

109876

9876

876

76

6

Figure 4: Blockwise raycasting scheme. A ray-front is advancing
through the volume processing one list of blocks in each pass. The
numbers inside the blocks identify their block list.

1 2

2 3

2 1

3 2

2 3

1 2

3 2

2 1

viewing direction

blocklist number

Figure 5: Front-to-back orders of blocks. In an interval of 90 degrees
of the viewing direction the front-to-back order remains constant.
The numbers inside the blocks identify their block list, and thus the
designated processing order.

When the ray list of a block is empty, processing is continuedwith
the next block. Figure 4 illustrates this approach.

Due to the subdivision of the volume, it is very likely that a block
entirely remains in a fast cache while its rays are being processed,
provided the block size is chosen appropriately. The generation of
the block lists does not have to be performed for each frame. For
parallel projection there are eight distinct cases where the order of
blocks which have to be processed remains the same. Thus, thelists
can be pre-computed for these eight cases. Figure 5 shows this for
2D where there are four cases.

4 PARALLELIZATION STRATEGIES FOR COMMODITY
HARDWARE

Raycasting has always posed a challenge on hardware resources.
Thus, numerous approaches for parallelization have been presented.
As our target platform is consumer hardware, we have focusedon
two parallelization schemes available in current stand-alone PCs:
Symmetric Multiprocessing (SMP) and Simultaneous Multithread-
ing (SMT).

4.1 Symmetric Multiprocessing

Architectures using multiple similar processors connected via a
high-bandwidth link and managed by one operating system arere-
ferred to as Symmetric Multiprocessing systems. Each processor
has equal access to I/O devices. As Law and Yagel’s traversal
scheme was originally developed for parallelization, it isstraight-
forward to apply to SMP architectures. The blocks in each of the

rays with same

subsequent block

simultaneously

processed blocks

Figure 6: Concurrency problem in parallel block processing. The
two highlighted blocks are processed by different CPUs. When both
CPUs try to add their rays to the next block’s ray list, race conditions
can occur.

block lists described in Section 3.3 can be processed simultane-
ously. Each list is partitioned among thecountphysical CPUs avail-
able.

A possible problem occurs when rays from two simultaneously
processed blocks have the same subsequent block, as shown inFig-
ure 6. As blocks processed by different CPUs can contain rays
which have the same subsequent block, race conditions occurwhen
both CPUs simultanously try to assign rays to the ray list of one
block. One way of handling these cases would be to use synchro-
nization primitives such as mutexes or critical sections toensure
that only one thread can assign rays at a time. However, the re-
quired overhead can decrease the performance drastically.There-
fore, to avoid race conditions when two threads try to add rays to
the ray list of a block, each block has a ray list for every physical
CPU. When a block is being processed, the rays of all these lists are
cast. When a ray leaves the block, it is added to the new block’s ray
list corresponding to the CPU currently processing the ray.

The basic algorithm processes the pre-generated block lists in
passes. TheProcessVolumeprocedure (see Algorithm 1) is exe-
cuted by the main thread and distributes the blocks of each pass
among the available processors. It starts the execution ofProcess-
Blocks(see Algorithm 2) in a thread for each of the processors.
ProcessBlockstraverses the list of blocks assigned to a processor
and processes the rays of each block.ProcessRayperforms resam-
pling, gradient estimation, shading, and compositing for aray, until
it leaves the current block or is terminated for another reason (e.g.,
early ray termination). It returns true if the ray enters another block
and false if no further processing of the ray is necessary.Compute-
Block returns the new block of a ray when it has left the current
block. In the listed procedures,countphysical is the number of phys-
ical CPUs in the system.

Algorithm 1 ProcessVolume(blocklists)
for all lists l in blocklistsdo

Partition l = l0∪ ...∪ lcountphysical−1
for i = 0 tocountphysical−1 do

Begin execution of ProcessBlocks(li ,i) in threadTi+1 on physical
CPU i

end for
Wait for threadsT1,...,Tcountphysical to finish

end for

4.2 Simultaneous Multithreading

Simultaneous Multithreading is a well-known concept in worksta-
tion and mainframe hardware. It is based on the observation that

Algorithm 2 ProcessBlocks(blocklist,idphysical)

for all blocksb in blocklist do
for i = 0 tocountphysical−1 do

for all raysr in b.raylist[i] do
if ProcessRay(r) then
{the ray has entered another block}
Remove(b.raylist[i],r)
newBlock= ComputeBlock(r)
Insert(newBlock.raylist[idphysical],r)

else
{the ray has been terminated or has left the volume}
Remove(b.raylist[i],r)

end if
end for

end for
end for

the execution resources of a processor are rarely fully utilized. Due
to memory latencies and data dependencies between instructions,
execution units have to wait for instructions to finish. While mod-
ern processors have out-of-order execution units which reorder in-
structions to minimize these delays, they rarely find enoughinde-
pendent instructions to exploit the processor’s full potential. SMT
uses the concept of multiple logical processors which sharethe re-
sources (including caches) of just one physical processor.Execut-
ing two threads simultaneously on one processor has the advantage
of more independent instructions being available, and thusleads
to more efficient CPU utilization. Intel’s SMT implementation is
called Hyper-Threading [14] and was first available on the Pentium
4 CPU. Currently, two logical CPUs per physical CPU are sup-
ported.

Exploiting SMT, however, is not as straight-forward as it may
seem at first glance. Since the logical processors share caches, it is
essential that the threads operate on neighboring data items. There-
fore, treating the logical CPUs in the same way as physical CPUs
leads to little or no performance increase. Instead, it might even
lead to a decrease in performance, due to cache thrashing. Thus,
the processing scheme has to be extended in order to allow mul-
tiple threads to operate within the same block. The blocks are
distributed among physical processors as described in the previ-
ous section. Within a block, multiple threads, each executing on
a logical CPU, simultaneously process the rays of the block.Using
several threads to process the ray list of a block would lead to race
conditions and would therefore require expensive synchronization.
Thus, instead of each block having just one ray list for everyphys-
ical CPU, we now havecountlogical lists per physical CPU, where
countlogical is the number of threads that will simultaneously pro-
cess the block, i.e., the number of logical CPUs per physicalCPU.
Thus, each block hascountphysical·countlogical ray lists.

The basic algorithm described in the previous section is extended
in the following way: TheProcessBlocksprocedure (see Algo-
rithm 3) now starts the execution ofProcessRaysfor each logical
CPU of the physical CPU it is executed on.ProcessRays(see Al-
gorithm 4) processes the rays of a block for one logical CPU. All
other routines remain unchanged.

Algorithm 3 ProcessBlocks(blocklist,idphysical)

for all blocksb in blocklist do
for i = 0 tocountlogical −1 do

Begin execution of ProcessRays(b,idphysical,i) in thread
Tidphysical·countlogical+i+1 on logical CPUi of physical CPUidphysical

end for
Wait for threadsTidphysical·countlogical+1,...,Tidphysical·countlogical+countlogical to
finish

end for

TT0 0

TT1 1

TT3 3

TT4 4

logical CPU 0

logical CPU 1

physical CPU 0

image plane

advancing

ray-front

TT2 2

TT6 6

TT5 5

logical CPU 3

logical CPU 2

physical CPU 1

Figure 7: Simultaneous Multithreading enabled raycasting. The work
is distributed among the threads Ti executing on different logical
CPUs.

Algorithm 4 ProcessRays(block,idphysical,idlogical)

for i = 0 tocountphysical−1 do
for all raysr in block.raylist[i][idlogical] do

if ProcessRay(r) then
{the ray has entered another block}
Remove(currentBlock.raylist[i][idphysical],r)
blocknew = ComputeBlock(r)
Insert(blocknew.raylist[idphysical][idlogical],r)

else
{the ray has been terminated or has left the volume}
Remove(block.raylist[i][idlogical],r)

end if
end for

end for

Figure 7 depicts the operation of the algorithm for a system with
two physical CPUs, each allowing simultaneous execution oftwo
threads, i.e.countphysical= 2 andcountlogical = 2. In the beginning
seven treads,T0, ...,T6, are started.T0 performs all the preprocess-
ing. In particular, it has to assign the rays to those blocks through
which the rays enter the volume first. Then it has to choose thelists
of blocks which can be processed simultaneously, with respect to
the eight to distinguish viewing directions. Each list is partitioned
by T0 and sent toT1 andT2. After a list is sent,T0 sleeps until its
slaves are finished. Then it continues with the next pass.T1 sends
one block after the other toT3 andT4. T2 sends one block after the
other toT5 andT6. After a block is sent, they sleep until their slaves
are finished. Then they send the next block to process, and so on.
T3, T4, T5, andT6 perform the actual raycasting. TherebyT3 and
T4 simultaneously process one block, andT5 andT6 simultaneously
process one block.

5 MEMORY EFFICIENT ACCELERATION DATA STRUC-
TURES

Applying efficient memory access and parallelization techniques
still is not sufficient to efficiently handle the huge processing loads
caused by large datasets. We present algorithmic optimizations to
reduce this workload. We introduce three techniques which each
can achieve a significant reduction of rendering times. Our goal

was to minimize the additional memory requirements of newlyin-
troduced data structures.

5.1 Gradient Cache

It has been argued that the quality of the final image is heavily influ-
enced by the gradients used in shading [17]. High-quality gradient
estimation methods have been developed, which are generally more
expensive due to the large neighborhood they use [19]. Many ap-
proaches therefore use expensive gradient estimation techniques to
precompute gradients at the grid positions and store them together
with the original samples. The additional memory requirements,
however, limit the application of this approach to large datasets.
For example, using 2 bytes for each component of the gradientin-
creases the size of the dataset by a factor of four (assuming 2bytes
are used for the original samples). In addition to the increased mem-
ory demands of precomputed gradients, this approach also reduces
the effective memory bandwidth. We therefore choose to perform
gradient estimation on-the-fly. Consequently, when using an expen-
sive gradient estimation method, caching of intermediate results is
inevitable if high performance has to be achieved. An obvious opti-
mization is to perform gradient estimation only once for each cell.
When a ray enters a new cell, the gradients are computed at all
eight corners of the cell. The benefit of this method is dependent
on the number of resample locations per cell, i.e., the object sample
distance.

However, the computed gradients are not reused for other cells.
This means that each gradient typically has to be computed eight
times, as illustrated in Figure 8. For expensive gradient estimation
methods, this can considerably reduce the overall performance. It
is therefore important to store the results in a gradient cache. How-
ever, allocating such a cache for the whole volume still has the men-
tioned memory problem.

Our blockwise volume traversal scheme allows us to use a dif-
ferent approach. We perform gradient caching on a block basis.
The cache is able to store one gradient entry for every grid posi-
tion contained in a cell of the current block. Thus, the required
cache size is(Bx + 1)× (By + 1)× (Bz+ 1) whereBx, By, Bz are
the block dimensions. The block dimensions have to be increased
by one to enable interpolation across block boundaries. Each en-
try of the cache stores the three components of a gradient, using a
4 byte single precision floating-point number for each component.
Additionally, a bit array has to be stored that encodes the presence
of an entry in the cache for each grid position in a cell of the current
block.

When a ray enters a new cell, for each of the eight corners of the
cell the bit set is queried. If the result of a query is zero, the gradient
is computed and written into the cache. The corresponding value of
the bit set is set to one. If the result of the query is one, the gradient
is already present in the cache and is retrieved. The disadvantage of
this approach is that gradients at block borders have to be computed
multiple times. However, this caching scheme still greatlyreduces
the performance impact of gradient computation and requires only
a modest amount of memory. Furthermore, the required memoryis
independent of the volume size, which makes this approach appli-
cable to large datasets.

5.2 Entry Point Buffer

One of the major performance gains in volume rendering can be
achieved by quickly skipping data which is classified as transpar-
ent. In particular, it is important to begin sampling at positions
close to the data of interest, i.e., the non-transparent data. This is
particularly true for medical datasets, as the data of interest is usu-
ally surrounded by large amounts of empty space (air). The idea is
to find, for every ray, a position close to its intersection point with

rays
resample

locations

Figure 8: Redundant gradient computation at grid positions. With-
out caching, the gradient at the highlighted grid position has to be
recomputed multiple times.

block

image plane

template

Figure 9: Block template generation. The block is projected onto the
image plane, its depth values are rasterized and stored in a template
image.

the visible volume, thus, we refer to this search as entry point deter-
mination. The advantage of entry point determination is that it does
not require additional overhead during the actual raycasting pro-
cess, but still allows to skip a high percentage of empty space. The
entry points are determined in the ray setup phase and the rays are
initialized to start processing at the calculated entry position. The
basic goal of entry point determination is to establish a buffer, the
entry point buffer, which stores the position of the first intersection
with the visible volume for each ray.

As blocks are the basic processing units of our algorithm, the
first step is to find all blocks which do not contribute to the visible
volume using the current classification, i.e., all blocks that only con-
tain data values which are classified as transparent. It is important
that the classification of a whole block can be calculated quickly
to allow interactive transfer function modification. We store the
minimum and maximum value of the samples contained in a block
and use a summed area table of the opacity transfer function to
determine the visibility of the block [12, 11]. We then perform a
projection of each non-transparent block onto the image plane with
hidden surface removal to find the first intersection point ofeach ray
with the visible volume [25]. The goal is to establish an entry point
buffer of the same size as the image plane, which contains thedepth
value for each ray’s intersection point with the visible volume. For
parallel projection, this step can be simplified.

As all blocks have exactly the same shape, it is sufficient to gen-
erate one template by rasterizing the block under the current view-
ing transformation (see Figure 9). Projection is performedby trans-

(a) (b)

Figure 10: Block and octree projection. (a) projection of non-
transparent blocks. (b) projection of non-transparent octree nodes.

lating the template by a vectort = (tx,ty,tz)T which corresponds to
the block’s position in three-dimensional space in viewingcoordi-
nates. Thus,tx andty specify the position of the block on the image
plane (and therefore the location where the template has to be writ-
ten into the entry point buffer) andtz is added to the depth values
of the template. The Z-buffer algorithm is used to ensure correct
visibility. In ray setup, the depth values stored in the entry point
buffer are used to initialize the ray positions.

The disadvantage of this approach is that it requires an addi-
tion and a depth test at every pixel of the template for each block.
This can be greatly reduced by choosing an alternative method.The
blocks are projected in back-to-front order. The back-to-front or-
der can be easily established by traversing the generated block lists
(see Section 3.3) in reverse order. For each block the Z-value of
the generic template is written into the entry point buffer together
with a unique index of the block. After the projection has been
performed, the entry point buffer contains the indices and relative
depth values of the entry points for each ray. In ray setup, the block
index is used to find the translation vectort for the block andtz is
added to the relative depth value stored in the buffer to find the en-
try point of the ray. The addition only has to be performed forevery
ray that actually intersects the visible volume.

We further extend this approach to determine the entry points in
a finer resolution than block granularity. We replace the minimum
and maximum values stored for every block by a min-max octree.
Its root node stores the minimum and maximum values of all sam-
ples contained in the block. Each additional level containsthe min-
imum and maximum value for smaller regions, resulting in a more
detailed description of parameter variations inside the block. The
resulting improvement in entry point determination is depicted in
Figure 10. Every time the classification changes, the summedarea
table is recursively evaluated for each octree node and the classifi-
cation information is stored as linearized octree bit encoding using
hierarchy compression.

The projection algorithm is modified as follows. Instead of one
block template there is now a template for every octree level. The
projection of one block is performed by recursively traversing the
hierarchical classification information in back-to-frontorder and
projecting the appropriate templates for each level, if thecorre-
sponding octree node is non-transparent. In addition to theblock
index, the entry point buffer now also stores an index for thecor-
responding octree node. In ray setup, the depth value in the entry
point buffer is translated by the thetz component of the translation
vector plus the sum of the relative offsets of the node in the octree.

The node index encodes the position of a node’s origin within
the octree. It can be calculated in the following way:

index(node) =
N−1

∑
i=0

octanti(node) ·8N−i−1 (3)

whereN is the depth of the octree,octanti is the octant of level
i where the node is located. For an octree of depthN there are
8N different indices. The relative translational offsets forthe octree
nodes can be precomputed and stored in a lookup table of 8N entries
indexed by the node index.

5.3 Cell Invisibility Cache

We introduce a cell invisibility cache to skip the remainingtranspar-
ent regions at cell level. We can skip the resampling and composit-
ing in a cell if all eight samples of the cell are classified as transpar-
ent. To determine the transparency, a transfer-function lookup has
to be performed for each of these samples. For large zoom factors,
several rays can hit the same cell and for each of these rays the same
lookups would have to be performed.

A cell invisibility cache is attached at the beginning of thetradi-
tional volume raycasting pipeline. This cache is initialized in such
a way that it reports every cell as visible. In other words every cell
has to be classified. Now, if a ray is sent down the pipeline, every
time a cell is classified invisible this information is stored in the
cache. If a cell is found to be invisible, this information isstored
by setting the corresponding bit in the cell invisibility cache. As
the cache stores the combined information for eight samplesof a
cell in just one bit, this is more efficient than performing a trans-
fer function lookup for each sample. The information storedin the
cell invisibility cache remains valid as long as no transferfunction
modifications are performed. During the examination of the data,
e.g., by changing the viewing direction, the cache fills up and the
performance increases progressively.

The advantage of this technique is that no extensive computa-
tions are required when the transfer function changes. The reset
of the buffer can be performed with virtually no delay, allowing
fully interactive classification. As transfer function specification is
a non-trivial task, minimizing delays initiated by transfer function
modifications greatly increases usability.

6 RESULTS

We performed a comprehensive performance evaluation of thepro-
posed techniques. The results were obtained by thorough experi-
ments on diverse hardware.

6.1 Memory Management for Large Datasets

For a comparison of bricked and linear volume layouts, we used a
Dual Intel Pentium Xeon 2.4 GHz equipped with 512 KB level-2
cache, 8 KB level-1 data cache, and 1 GB of Rambus memory.

In our system, we are able to support different block sizes, as
long as each block dimension is a power of two. If we set the block
size to the actual volume dimensions, we have a common raycaster
which operates on a simple linear volume layout. This enables us
to make a meaningful comparison between a raycaster which oper-
ates on simple linear volume layout and a raycaster which operates
on a bricked volume layout. To underline the effect of bricking
we benchmarked different block sizes. Figure 11 shows the actual
speedup achieved by blockwise raycasting. For testing, we speci-
fied a translucent transfer-function, such that the impact of all high
level optimizations was overridden. In other words, the final image
was the result of brute-force raycasting of the whole data. The size
of the dataset had no influence on the actual optimal gains.

Going from left to right in the chart shown in Figure 11, first we
have a speedup of about 2.0 with a block size of 1 KB. Increasing
the block size up to 64 KB also increases the speedup. This is due
to more efficient use of the cache. The chart shows an optimum at a
block size of 64KB (32×32×32) with a speedup of about 2.8. This
number is the optimal tradeoff between the needed cache space for

block size in KB

1

3

4

2

simple linear

volume layout

bricking overhead

affects speedup

sp
ee

d
u
p
 f

ac
to

r

2.8

optimal block size

1 8 64 512 4096 32768

Figure 11: Block-based raycasting speedup compared to raycasting
on a linear volume layout.

64% savings

49% savings

30% savings
on

off

off

on

SMT computation time

1 thread

2 threads

2 threads

4 threads

two

speedup

1.00

1.42

1.96

2.78

one

two

one

CPUs

Figure 12: Symmetric Multiprocessing and Simultaneous Multi-
threading speedups.

ray data structures, sample data, and lookup tables. Largerblock
sizes lead to performance decreases, as they are too large for the
cache, but still suffer from the overhead caused by bricking. This
performance drop-off is reduced, once the block size approaches
the volume size. With only one volume-sized block, the rendering
context is that of a common raycaster operating on a linear volume
layout.

6.2 Parallelization Strategies for Commodity Hardware

To evaluate the performance of our parallelization strategies, we
used the same test system as in the previous section. This system
has two CPUs and supports Hyper-Threading. Our system is able to
force threads on specific physical and logical CPUs. By following
this mechanism we tested different configurations to obtainfigures
for the speedup achieved by the presented techniques. All test runs
consistently showed the same speedup factors.

The achieved speedups for Symmetric Multiprocessing and Si-
multaneous Multithreading are shown in Figure 12. Testing Si-
multaneous Multithreading on only one CPU showed an aver-
age speedup of 30%. While changing the viewing direction, the
speedup varies from 25% to 35%, due to different transfer pat-
terns between the level 1 and the level 2 cache. Whether Hyper-
Threading is enabled or disabled, adding a second CPU approx-
imately reduces the computational time by 50%, i.e., Symmetric
Multiprocessing and Simultaneous Multithreading are independent.
This shows that our Simultaneous Multithreading scheme scales
very well on multi-processor machines. The Hyper-Threading
benefit of approximately 30% is maintained if the second hyper-
threaded CPU is enabled.

6.3 Memory Efficient Acceleration Data Structures

To demonstrate the impact of our high-level optimizations we used
a commodity notebook system equipped with an Intel Centrino1.6
GHz CPU, 1 MB level 2 cache, and 1 GB RAM. This system has

0.75 0.5 0.1251.0

object sample distance

0.75 0.5 0.1251.0 0.75 0.5 0.1251.0

zoomfactor 2.0zoomfactor 1.0zoomfactor 0.5

15

10

5

10

5

15 15

10

5

re
n
d
er

 t
im

e
in

 s
ec

o
n
d
s

5.4

14.9

27.0

7.9

no caching cell caching block caching

Figure 13: Comparison of different gradient caching strategies.

one CPU and does not support Hyper-Threading so the presented
results only reflect performance increases due to our high-level ac-
celeration techniques.

The memory consumption of the gradient cache is not related
to the volume dimensions, but determined by the fixed block size.
We use 32× 32× 32 sized blocks, the size of the gradient cache
therefore is is(33)3 · 3 · 4 byte≈ 422 KB. Additionally we store
for each cache entry a validity bit, which adds up to 333/8 bytes≈
4.39 KB.

Figure 13 shows the effect of per block gradient caching com-
pared to per cell gradient caching and no gradient caching atall.
Per cell gradient caching means that gradients are reused for mul-
tiple resample locations within a cell. We chose an adequateopac-
ity transfer function to enforce translucent rendering. The charts
from left to right show different timings for object sample distances
from 1.0 to 0.125 for three different zoom factors 0.5, 1.0, and 2.0.
In case of zoom factor 1.0 we have one ray per cell, already here
per block gradient caching performs better than per cell gradient
caching. This is due to the shared gradients between cells. For
zooming out (0.5) both gradient caching schemes perform equally
well. The rays are so far apart that nearly any gradients are shared.
On the other hand, for zooming in (2.0), per block caching performs
much better than per cell caching. This is due to the increased num-
ber of rays per cell. For this zoom factor, per brick gradientcaching
achieves a speedup of approximately 3.0 compared to no gradient
caching at a typical object sample distance of 0.5

The additional memory usage of the acceleration data structures
is rather low. The cell invisibility cache has a size of 323 bit = 4096
byte. The min-max octree has a depth of three storing 4 byte at
each node (a 2 byte minimum and maximum value) and requires
at most 2340 byte. Additionally, the classification information is
stored, which requires 66 byte. We use blocks of size 32×32×32
storing 2 bytes for each sample, which is a total of 65536 bytes.
Our data structures increase the total memory requirementsby ap-
proximately 10%.

Figure 14 compares our acceleration techniques for three large
medical datasets. In the fourth column of the table, the render
times for entry point determination using block granularity is dis-
played. Column five shows the render times for octree based entry
point determination. In the fifth column, the render times for oc-
tree based entry point determination plus cell invisibility caching
are displayed. Typically, about 2 frames/second are achieved for
these large data sets.

(a) (b) (c) (d) (e)

Visible Male aorta lower extremities

Image Dimensions Size Block Octree Cell
(a) 587×341×1878 0.70 GB 0.61 s 0.46 s 0.40 s
(b) 587×341×1878 0.70 GB 0.68 s 0.53 s 0.45 s
(c) 512×512×1112 0.54 GB 1.16 s 0.93 s 0.61 s
(d) 512×512×1202 0.59 GB 0.86 s 0.70 s 0.64 s
(e) 512×512×1202 0.59 GB 0.69 s 0.46 s 0.37 s

Figure 14: Acceleration techniques tested on different datasets. Col-
umn four lists the render times for entry point determination at block
level. The fifth column gives the render times for entry point deter-
mination using octree projection. The last column lists render times
for octree projection plus additional cell invisibility caching.

6.4 Visualization Results

To demonstrate the applicability of the presented methods,we dis-
play visualization results for clinical datasets in Figures 15, 16, 17,
and 18. The images show anatomic features and/or pathologies.

7 CONCLUSION

We have presented different techniques for volume visualization of
large datasets on commodity hardware. We have shown that effi-
cient memory management is fundamental to achieve high perfor-
mance. Our work on parallelization has demonstrated that well-
known methods for large parallel systems can be adapted and ex-
tended to exploit evolving technologies, such as Simultaneous Mul-
tithreading. Our memory efficient data structures provide frames
per second performance even for large datasets. A key point of
our work was to demonstrate that commodity hardware is able to
achieve the performance necessary for real-world medical applica-
tions. In future work, we will investigate out-of-core and compres-
sion methods to permit the use of even larger datasets.

REFERENCES

[1] S. Bruckner. Efficient volume visualization of large medical datasets.
Master’s thesis, Vienna University of Technology, 2004.

[2] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. In Pro-
ceedings of the Symposium on Volume Visualization 1994, pages 91–
98, 1994.

[3] A. Van Gelder and K. Kim. Direct volume rendering with shading
via three-dimensional textures. InProceedings of the Symposium on
Volume Visualization 1996, pages 23–30, 1996.

[4] S. Grimm, S. Bruckner, A. Kanitsar, and E. Gröller. A refined data
addressing and processing scheme to accelerate volume raycasting.
Computers & Graphics, 28(5), 2004. To appear.

[5] S. Grimm, S. Bruckner, A. Kanitsar, and M. E. Gröller. Flexible direct
multi-volume rendering in dynamic scenes. InProceedings of the 9th

International Fall Workshop on Vision, Modeling, and Visualization,
2004. To appear.

[6] S. Grimm, S. Bruckner, A. Kanitsar, and M. E. Gröller. Memory ef-
ficient acceleration structures and techniques for cpu-based volume
raycasting of large data. InProceedings of the 9th IEEE/SIGGRAPH
Symposium on Volume Visualization and Graphics, 2004. To appear.

[7] T. Günther, C. Poliwoda, C. Reinhart, J. Hesser, R. Männer, H.-P.
Meinzer, and H.-J. Baur. VIRIM: A massively parallel processor for
real-time volume visualization in medicine.Computers & Graphics,
19(5):705–710, 1995.

[8] S. Guthe, M. Wand, J. Gonser, and W. Straßer. Interactiverendering
of large volume data sets. InProceedings of Visualization 2002, pages
53–60, 2002.

[9] G. Knittel. The UltraVis system. InProceedings of the Symposium on
Volume Visualization 2000, pages 71–79, 2000.

[10] J. Krüger and R. Westermann. Acceleration techniquesfor GPU-based
volume rendering. InProceedings of Visualization 2003, pages 287–
292, 2003.

[11] P. Lacroute.Fast Volume Rendering Using a Shear-Warp Factoriza-
tion of the Viewing Transformation. PhD thesis, Stanford University,
Computer Systems Laboratory, 1995.

[12] P. Lacroute and M. Levoy. Fast volume rendering using a shear-
warp factorization of the viewing transformation.Computer Graphics,
28(Annual Conference Series):451–458, 1994.

[13] A. Law and R. Yagel. Multi-frame thrashless ray castingwith ad-
vancing ray-front. InProceedings of Graphics Interfaces 1996, pages
70–77, 1996.

[14] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller, and
M. Upton. Hyper-threading technology architecture and microarchi-
tecture.Intel Technology Journal, 6(1):4–15, 2002.

[15] M. Meißner, U. Hoffmann, and W. Straßer. Enabling classification
and shading for 3D texture mapping based volume rendering using
OpenGL and extensions. InProceedings of Visualization 1999, pages
207–214, 1999.

[16] M. Meißner, U. Kanus, G. Wetekam, J. Hirche, A. Ehlert, W. Straßer,
M. Doggett, and R. Proksa. VIZARD II: A reconfigurable interactive
volume rendering system. InProceedings of the Workshop on Graph-
ics Hardware 2002, pages 137–146, 2002.

[17] T. Möller, R. Machiraju, K. Mueller, and R. Yagel. A comparison
of normal estimation schemes. InProceedings of Visualization 1997,
pages 19–26, 1997.

[18] B. Mora, J.-P. Jessel, and R. Caubet. A new object-orderray-casting
algorithm. In Proceedings of Visualization 2002, pages 203–210,
2002.

[19] L. Neumann, B. Csébfalvi, A. König, and M. E. Gröller. Gradient
estimation in volume data using 4D linear regression. InProceedings
of Eurographics 2000, pages 351–358, 2000.

[20] R. Osborne, H. Pfister, H. Lauer, N. McKenzie, S. Gibson,W. Hi-
att, and T. Ohkami. EM-Cube: An architecture for low-cost real-time
volume rendering. InProceedings of the Workshop on Graphics Hard-
ware 1997, pages 131–138, 1997.

[21] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen,and P. Shirley.
Interactive ray tracing for volume visualization.IEEE Transactions
on Visualization and Computer Graphics, 5(3):238–250, 1999.

[22] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The vol-
umepro real-time ray-casting system. InProceedings of SIGGRAPH
1999, pages 251–260, 1999.

[23] H. Ray, H. Pfister, D. Silver, and T. A. Cook. Ray casting architec-
tures for volume visualization.IEEE Transactions on Visualization
and Computer Graphics, 5(3):210–223, 1999.

[24] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser. Smart
hardware-accelerated volume rendering. InProceedings of the Joint
EUROGRAPHICS - IEEE TCVG Symposium on Visualisation 2003,
pages 231–238, 2003.

[25] R. Srinivasan, S. Fang, and S. Huang. Volume rendering by template-
based octree projection. InProceedings of the Workshop on Visualiza-
tion in Scientific Computing 1997, pages 155–163, 1997.

[26] R. Westermann and T. Ertl. Efficiently using graphics hardware in
volume rendering applications. InProceedings of SIGGRAPH 1998,
pages 169–178, 1998.

Figure 15: CT scan of colon. Bones and colon are displayed in the
top image. The bottom image shows the colon without bones.

Figure 16: CT scan of heart. The myocardal muscle is displayed in
red, the coronary vessels are depicted in yellow tones.

Figure 17: CT scan of lumbar spine. A fracture of a lumbar vertebra
is highlighted.

Figure 18: CT scan of abdomen. Through enhancement of the ab-
dominal vascular structure an aorta aneurysma can be recognized.

